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ABSTRACT
Manning, Melissa Lynn. Computational Evaluation of Quiet Tunnel Hypersonic
Boundary Layer Stability Experiments. (Under the direction of Dr. Ndaona Chokani.)

A computational evaluation of two stability experiments conducted in the NASA
Langley Mach 6 axisymmetric quiet nozzle test chamber facility is conducted. Navier-
Stokes analysis of the mean flow and linear stability theory analysis of boundary layer
disturbances is performed in the computations. The effects of adverse pressure gradient
and wall cooling are examined.

Calculated pressure, temperature and boundary layer thickness distributions show
very good overall agreement with experimental measurements. Computed mass flux and
total temperature profiles show very good quantitative agreement with uncalibrated hot-
wire measurements obtained with the hot-wire operated in high and low overheat modes
respectively. Comparisons between calibrated hot-wire data and mean flow
computations show excellent agreement in the early stages of the transitional flow.
However, examination of the wire Reynolds number and mass flux and total temperature
eigenfunction profiles suggest that when operated in high overheat mode the sensitivity
of the hot-wire to total temperature is significant. Thus, while uncalibrated hot-wire
measurements are useful to characterize the overall features of the flow, calibrated hot-
wire measurements are necessary for quantitative comparison with stability theory.
Computations show that adverse pressure gradient and wall cooling decrease the
boundary layer thickness and increase the frequency and amplification rate of the
unstable second mode disturbances; these findings are consistent with the experimental

observations.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The location and extent of boundary layer transition is a major issue in the design
of hypersonic atmospheric and reentry vehicles. The nature of the boundary layer over
the vehicle affects the aerodynamic performance of the vehicle as well as thermal
protection system and propulsion system requirements. In hypersonic flight, vehicles
experience much higher skin friction and surface heat transfer due to transitional and
turbulent boundary layer flow than for laminar boundary layer flow. Transition delay can
result in significant drag reduction and can greatly reduce aerodynamic heating loads.
Thus, there exists a fundamental need for accurate laminar to turbulent boundary layer
transition prediction tools in order to accomplish improved vehicle design at hypersonic

speeds.

1.2 Transition Process

Natural laminar to turbulent boundary layer transition, Figure 1.1, is a multistage
process, which is initiated from an initial, external disturbance field (White, 1991). This
external disturbance field is internalized in the boundary layer through receptivity. The
term receptivity was coined by Morkovin (1969) to define the means by which a
disturbance environment generates growing disturbances in a boundary layer. Stages of
linear and nonlinear growth of the internalized disturbances follow receptivity and lead to

the onset of transition and the breakdown to turbulent flow. Transition can also be



described as a consequence of the laminar boundary layer acting as a nonlinear oscillator
to environmental disturbances (Reshotko, 1994).

In attempting to describe the natural transition process, either the transition
approach or stability theory are followed (Lachowicz and Chokani, 1996). Empirical
methods are often used in the transition approach and are only able to locate transition.
Thus, in the transition approach, the Reynolds number at either the onset or end of
transition is determined and no details of the transition phenomena nor the disturbance
mechanisms that caused the transition are included. Stability theory, on the other hand,
describes the behavior of the disturbances in the flow leading to boundary layer
transition; this provides a physical understanding of the transition process. In between
these two approaches is transition modeling; in the more recent approach of Warren and
Hassan (1998) stability theory is used to provide the basic elements of the modeling for

transition prediction.

1.3 Empirical Methods

In the past, empirical relationships that are based on mean flow parameters such
as edge Mach number and Reynolds number have been used to predict boundary layer
transition. Herbert states that empirical methods should be supported by a broad database
and must account for all parameters relevant to the flow (1991). In the hypersonic flight
range, wind tunnel data obtained under realistic flight conditions are sparse. Reentry
flight data have also been used to determine empirical relationships. When ablating
thermal protection systems were used on reentry vehicles, accurate transition prediction

was not critical and empirical relationships were adequate for use as a design tool.




However, modern hypersonic vehicles have strict weight limitations and conservative
ablative systems are no longer feasible. Thus, empirical relationships are no longer

useful for hypersonic vehicle design.

1.4 Stability Theory

Stability theory provides details of the mechanisms that subsequently lead to
transition. Most of our knowledge of hypersonic boundary layer stability theory comes
from Mack’s pioneering work (1984, 1987). In hypersonic flows, inviscid instability
dominates viscous stability at all Reynolds numbers. Mack showed that there are
multiple modes of inviscid instability for hypersonic flow. The low frequency first mode
or Tollmien-Schlicting (T-S) instability is due to vorticity disturbances, which exist if
there is a generalized inflection point (gip) somewhere in the boundary layer. If the local

Mach number relative to the phase velocity, defined as

u—c
M, = .
! a (1.2.1)
is subsonic everywhere, Lees and Lin (1946) showed that a gip, defined as
i(pa_ujzo (12.2)
dy{’ 9y

is a sufficient condition for the existence of a first mode instability. For compressible
flow, the most unstable first mode disturbance is always oblique.

Mack showed that in addition to the first mode instability, multiple solutions to
the inviscid stability equations exist if jz2 -1 , that is if a relatively supersonic region

exists somewhere in the boundary layer, where
72 _ ((Z u-— (U)Me
M"= (o2 +57)1)" (1.2.3)




M?*>1 is a sufficient condition for the inviscid disturbances to exist and the presence of
a generalized inflection point is not required. The additional solutions, so called higher
modes, are referred to as Mack modes and physically represent new instabilities that can
affect hypersonic transition. Equation 1.2.3 is first satisfied at an edge Mach number of
2.2 for the case of an insulated flat plate boundary layer; this is the lowest Mach number
where Mack modes can exist. The high frequency Mack modes are acoustical in
character. The first of the Mack modes is called the second mode and it is the most
unstable. For hypersonic boundary layers, the second mode disturbances are more
dominant than first mode disturbances and are responsible for transition. The most
unstable disturbances are two-dimensional for the Mack modes. Mack also discovered
evidence of the tuning effect of the boundary layer, where the most amplified
disturbances have a wavelength of approximately twice the boundary layer thickness.
Thus, as the boundary layer thickness decreases, the second mode frequency increases.
The hierarchy of stability analysis methods involve, in order of decreasing
complexity, direct numerical simulation, large eddy simulation, parabolized stability
theory, and linear stability theory. Direct numerical simulation (DNS) is a method that
attempts to resolve all features of the flow in time and space down to the smallest
turbulence scales. Large eddy simulation (LES) assumes that the nature of the flow is
contained primarily in larger eddies which can be calculated on a suitable grid; smaller
eddies are assumed to behave more universally and are modeled without regard to the
flow. Application of both LES and DNS is restricted by computer time and memory
requirements, with computation times ranging from days to months and thus, only simple

geometries are computed. For example, Pruett and Chang’s spatial DNS calculation




simulating the Lachowicz and Chokani (1996) Mach 6 flow on an axisymmetric flared
cone had a run time of approximately 250 hours on a Cray supercomputer (1998).
Parabolized stability equations (PSE) model the spatially evolving linear and nonlinear
instabilities in a growing boundary layer flow. Chang and Malik (1993) showed that the
PSE are able to predict the nonlinear effects observed in the experiments of Stetson et al
(1983). However, the PSE are computationally demanding to solve. The PSE are space
marched and initial conditions must be specified; these initial conditions are not
completely defined for many experiments. Furthermore, for largely uncalibrated
experimental stability measurements, comparisons between flow variables and PSE
calculations are difficult at best. Linear stability theory (LST) models the spatially
evolving linear instabilities and assumes parallel boundary layer flow. Thus, LST is not
restricted by computer time or memory requirements and solutions on complex
geometries are easier to obtain. The basis of linear stability theory is that all flow
variables of a perturbation grow or decay in the same manner. Kimmel and Kendall
(1991) stated that in the linear region the individual hot-wire components need not be
known and only the logarithmic growth or decay of the voltage fluctuation is required to
determine the amplification rate. Thus, amplification rates derived from uncalibrated
hot-wire data are comparable to LST calculations. Mack showed that LST adequately
describes the onset of the second mode disturbance growth and the initial growth
characteristics (1987). Malik stated that while the transition process is a complex, rate-
dominated process, prediction methods may be based solely upon LST (1989). This

work utilizes LST to examine boundary layer instabilities.



1.5 Stability Experiments

The stability experiments of Kendall (1975) provided the first confirmation of the
existence and dominance of the second-mode disturbances in hypersonic boundary layer
flow. Demetriades’ experiments revealed the periodic wavelike structure of laminar
boundary layers (1977). Stetson et al performed a series of experiments that examined
the effects of bluntness, angle of attack, unit Reynolds number and environmental effects
on the stability of laminar boundary layer flow over a cone (1983, 1984, 1986, 1989).
Demetriades (1978) and Stetson (1983) have verified Mack’s findings that the
wavelength of the most amplified second-mode disturbance is approximately twice the
boundary layer thickness. Kimmel and Poggie examined the effect of total temperature
on boundary layer stability (2000). All of the above mentioned experiments were
conducted in conventional wind tunnels. It is commonly known that conventional high-
speed wind tunnel flows produce large amplitude freestream disturbances. Thus, the use
of conventional wind tunnel data to predict flight transition is hindered by the influence

of the tunnel’s freestream disturbance environment.

1.6 Freestream Noise

The primary source of wind tunnel freestream disturbances is sound radiated into
the test section from the turbulent boundary layer on the nozzle walls. The frequency
content of the sound radiation excites disturbances in the boundary layer and results in
transition locations farther upstream than found in flight. Pate (1971) presented a
comparison of transition Reynolds numbers for three conventional wind tunnels with

aeroballistic range data obtained by Potter (1968), Figure 1.2. The wind tunnel transition



Reynolds numbers are significantly lower than the flight data. This early transition
occurs because the wind tunnel freestream disturbances are large enough to bypass linear
growth and force early nonlinear growth, so-called bypass transition (Reshotko, 1994).
The wind tunnel environment provides the mechanism by which boundary layer
disturbance growth is initiated and establishes the initial disturbance amplitude at the
onset of the disturbance growth (Stetson et al, 1986). Thus, different acoustic
disturbance environments found in different conventional wind tunnels also produce
different transition results. This is evident when comparing the transition Reynolds
numbers from the three different wind tunnels seen in Figure 1.2. Discrepancies are also
found when comparing conventional wind tunnel data with stability analysis data, which
assume that no freestream disturbances are present, see Mack (1987) for example. Thus,
the usefulness of stability data acquired in the conventional wind tunnel experiments is

limited (Reshotko, 1997).

1.7 Quiet Wind Tunnel

In order to obtain stability measurements indicative of free flight, wind tunnels
with very low freestream disturbance environments, so called quiet wind tunnels, are
desired. Laminar boundary layer flow on the nozzle walls is required to decrease the
sound radiated into the test section and achieve low freestream disturbance levels.
Stability experiments conducted in quiet wind tunnels yield transition data comparable to
that obtained in free flight. Chen et al (1989) showed good agreement between transition
Reynolds number measurements obtained in a Mach 3.5 low disturbance wind tunnel and

predictions of stability theory as seen in Figure 1.3. In the early 1990’s, the NASA



Langley Research Center developed a Mach 6 quiet wind tunnel facility. Three stability
experiments were conducted by Lachowicz et al (1996), Doggett et al (1997) and
Blanchard and Selby (1996) in this facility before it was decommissioned. These
experiments examined the effects of adverse pressure gradient, angle of attack and wall
cooling respectively on flared-cone geometries. It is necessary to compare stability
analysis results with data obtained in the quiet tunnel environment in order to further

validate stability analysis as an accurate and useful tool in aerospace vehicle design.

1.8 Effects of Pressure Gradient and Cooling

Wall curvature and cooling affect boundary layer stability (Balakumar and Malik,
1994). The concave wall curvature results in Gortler vortices (Hall, 1982) which
destabilize the flow. The adverse pressure gradient, which results from the concave
curvature, introduces an inflection point in the streamwise mean velocity profile that is
destabilizing. The boundary layer edge Mach number is also reduced and thus the
boundary layer thickness decreases (Reshotko, 1994). Wall cooling removes the
inflection point in the velocity profile, which stabilizes the first mode. However, a
relative supersonic region remains and the second mode disturbances are further

destabilized (Stetson et al, 1989).

1.9 Objectives and Approach
This work has two main objectives. First, to compare Navier-Stokes mean flow
and LST computations to experimental measurements obtained in a quiet tunnel

environment. The effects of wall cooling and pressure gradient are examined. Second, to



assess the use of hot-wire anemometry and make recommendations for future quiet tunnel
experiments.

Details of the quiet wind tunnel facility, test conditions, model dimensions, and
hot-wire measurements are presented in Chapter 2. Chapter 3 discusses grid generation,
the Navier-Stokes mean flow solver, the grid refinement study and the LST code. In
Chapter 4, comparisons are made between mean flow and LST computations and
experimental measurements. Discussions concerning future experiments are also
presented. Conclusions and recommendations for future computational work are

presented in Chapter 5.
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CHAPTER 2

WIND TUNNEL EXPERIMENTS

2.1 Introduction

Wind tunnels with very low freestream disturbance levels comparable to free
flight conditions are required for boundary layer stability and transition research and to
ultimately provide reliable transition predictions for hypersonic flight vehicles.
Numerical methods assume an ideal, noiseless flow (except for computational round-off
errors) similar to that found in free flight. However, experimental high-speed flows in
conventional wind tunnels generally have a measurable disturbance field at large unit
Reynolds numbers. The high freestream disturbance levels in conventional wind tunnels
can cause premature boundary layer transition on test models. Wind tunnels with very
low comparable freestream disturbance levels, so called quiet tunnels, are therefore
needed to obtain reliable transition experiment results.

The relationship of the freestream external disturbance field environment to the
boundary layer disturbances that are ultimately responsible for transition are significant
to the boundary layer transition problem (Reshotko, 1997). The disturbances in high
speed wind tunnel flow are composed of three types: 1) velocity, or vortical disturbances,
2) temperature, or entropy disturbances, and 3) pressure, or acoustic disturbances (Pate
and Schueler, 1969). Valve noise in the stagnation chamber and flow non-uniformities
contribute to vorticity disturbances. Particles and temperature fluctuations in the flow
within the stagnation chamber produce entropy disturbances. In most wind tunnels,
vorticity and entropy disturbances are attenuated through the use of flow conditioning

filters placed upstream of the stagnation chamber, and meshes and screens within the
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stagnation chamber. Entropy disturbances are usually negligible downstream of the
screens. Vorticity disturbances are further reduced by the large contraction ratio between
the stagnation chamber and nozzle throat. Acoustic disturbances are the primary source
of freestream disturbances in conventional high speed wind tunnels. These disturbances
radiate along Mach lines from convecting eddies generated by the turbulent boundary
layer on the nozzle wall, Figure 2.1a, and are wind tunnel specific. The acoustic
disturbances interact with the boundary layer on the model and contribute to early
transition. To reduce the amplitude of the acoustic disturbances, laminar boundary layer
flow on the nozzle walls is desired.

The NASA Langley Research Center pioneered the development of the so-called
quiet nozzle. The slow-expansion nozzle contour, obtained by inserting a radial-flow,
straight-wall section upstream of the inflection point, extends the laminar boundary layer
flow farther downstream. Therefore, the initiation of Gortler vortices is delayed until the
beginning of the concave wall and the growth of Gortler vortices is decreased by the
larger radii of curvature of the concave wall (Chen et al, 1993). A high-quality nozzle
surface finish is essential to minimize the transition promoting effects of roughness,
which can lead to early boundary layer transition and degrade nozzle performance. The
Mach 6 quiet nozzle was incorporated into the Test Chamber Facility in the early 1990’s.
The freestream disturbance noise level in a quiet tunnel is further brought to low-levels
by a number of features designed to maximize the region of laminar flow over the nozzle
wall as shown in Figure 2.1b. High-density meshes and screens are used to attenuate
vorticity and entropy disturbances in the settling chamber so that they are negligible in

the test section. An annular boundary layer suction slot upstream of the nozzle throat is
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used to bleed off the upstream turbulent boundary layer and initialize a new boundary
layer on the downstream nozzle wall. As a result of the quiet wind tunnel modifications,
laminar boundary layer flow is extended downstream on the nozzle walls and low
freestream acoustic disturbance levels are achieved in the test section. A series of three
hypersonic boundary layer stability experiments were performed; two of these
experiments are studied in this work. Lachowicz and Chokani (1996) detailed the growth
of disturbances on a flared-cone at zero degree angle of attack. Blanchard and Selby
(1996) examined wall cooling on a flared-cone to describe the evolution of disturbances
into a nearly turbulent flow. When taken together, these experiments provide the
opportunity to examine the effect of an adverse pressure gradient and wall cooling on
boundary layer stability. Throughout this chapter only the first author’s name, Blanchard

or Lachowicz, will be used to reference their experiments.

2.2 Mach 6 Axisymmetric Quiet Nozzle Facility

The Langley low disturbance tunnel is a small open-jet blow-down facility with a
slow-expansion, axisymmetric, quiet, Mach 6 nozzle. Figure 2.2 shows the overall layout
of the wind tunnel facility. The nozzle has a throat diame;ter of 1.00in, exit diameter of
7.49in and length from throat to exit of 39.76in. A tunnel stagnation temperature of
810°R 13 R, a total pressure of 130psia +2psia and a free-stream Mach number is 5.91
+0.08 are used. These conditions correspond to a unit Reynolds number of 2.82x10%.
At this Reynolds number, quiet flow exists over the majority of the model surface. The

facility is first preheated, that is run in a subsonic mode with the models in place prior to
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hypersonic testing. After preheat, the typical run times at hypersonic flow conditions are

30 to 60 minutes.

2.3 Models

Two flared cone configurations are examined in this work. Both models have a
straight, 5~ half-angle section that tangentially merges into a flared region. The stainless
steel model surfaces are smooth with a less than 8x10°in surface finish; thus, roughness-
induced transition effects are minimal. The tangent circular arc flare produces a nearly
linear adverse pressure gradient, which results in measurable disturbance growth in the
boundary layer over a short length (Wilkinson, 1997). Without the pressure gradient,
transition would not have been attained within the limited quiet flow Reynolds number
range of the facility (Beckwith, 1974). The flare curvature also maintains an
approximately constant boundary layer thickness over the flare region, which allows
second mode disturbances of nearly constant frequency to grow.

The model used by Blanchard (1996) consists of a 6in straight portion followed
by a 12in outward flared region with a 91.44in radius of curvature, Figure 2.3. This
configuration is denoted as 91-6 referring respectively to the approximate radius of the
circular flare arc and the location of the tangency point. The model is instrumented with
51 thermocouples along one ray of the cone and 30 pressure ports of diameter 0.020in
located 180" from the thermocouple ray. The cone has a wall thickness of 0.080in and is
equipped with internal passages for active surface cooling as shown in Figure 2.4. The

cone tip is not cooled. Further details regarding the active cooling system are found in
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Blanchard’s report (1996). Adiabatic and cooled-wall (465 R) temperature conditions
are examined for the 91-6 model.

The cone model used by Lachowicz (1996) consists of a 10in straight portion
followed by a 10in flared region with a 93.07in radius of curvature, denoted 93-10, and is
shown in Figure 2.5. This cone-flare configuration results in a slightly smaller adverse
pressure gradient applied over a smaller extent of the model than for the 91-6 model.
Although Lachowicz examined nose bluntness effects, only the results obtained for the
model with a sharp tip are examined in this research. The model is instrumented with 29
pressure orifices and 51 thermocouple gages placed along diametrically opposite rays.
The skin thickness is 0.03in along the thermocouple ray and 0.06in elsewhere. The
model] is considered thin-skinned for the purpose of thermocouple measurements. Only
adiabatic wall conditions are examined for the 93-10 model.

The relevant details of the model placement in the tunnel are shown in Figure 2.6.
No universal pitch and yaw system existed for the wind tunnel, so both models were
manually positioned at a nominally zero degree angle of attack. The aft 3.5in of the 93-
10 and aft 3in of the 91-6 model extended downstream of the nozzle exit plane.
Wilkinson (1997) and Lachowicz (1996) examined spectra of the freestream disturbances
to which the models are exposed. Examination of the normalized hot-wire output for a
probe in the centerline plane of the nozzle show a growing low frequency disturbance
field radiating from the nozzle wall boundary layer, Figure 2.7. The radiated noise region
intersects the models at roughly 13in (Wilkinson, 1997) to 14.25in (Lachowicz, 1996)

from the sharp nose tip. Therefore, the first 13 to 14.25in of the models are located in a
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quiet freestream flow environment. However, the entire lengths of the models were

located within a region of uniform mean flow.

2.4 Measurements

Hot-wire anemometry is used to characterize the evolution of the pre-transitional
boundary layer disturbances. Although the hot-wire yields only a single point
measurement, and is intrusive, it is the preferred measurement technique in hypersonic
stability experiments (Kendall, 1993). The hot-wire can sense a wide range of
frequencies, and with a suitable calibration can yield fluctuations of two independent
flow variables. The measurement principle of the hot-wire is based on the convective
heat loss into the flow from the heated wire. An electric current heats the wire and the
electrical resistance of the wire depends on its temperature

R, =R [1+oT, -T,, ) (2.4.1)

ref
where « is the temperature coefficient of resistivity. The heat transfer (and hence
incident flow) may be inferred from the wire’s resistance.

Constant-current (CCA) and constant-temperature (CTA) hot-wire anemometers
have long been used in the study of fluid flows. The CCA was used by Stetson et al in
their experiments, which were conducted in conventional wind tunnels (1983, 1984,
1986, 1989). The CCA is laborious to use and must be adjusted for any change in wire
temperature, velocity or external temperature. Additionally, both the CTA and CCA
have deficiencies with respect to signal-to-noise ratio and sensitivity at the high

frequencies that are characteristic of hypersonic boundary layers. Lachowicz reported

that no measurable signals could be obtained in the Mach 6 tunnel using the CCA or CTA
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(1996). A hot-wire operated by a constant voltage anemometer (CVA) was used by
Lachowicz (1996) and Blanchard (1996). Sarma conceived the CVA to provide an
anemometer system without the shortcomings of the CCA and CTA systems (1998). At
the time of the experiments the CVA was a newly developed instrument, and thus the
understanding of its behavior was limited (Wilkinson, 1997). However, the CVA was the
only anemometer that was insensitive to the electromagnetic interference that emanated
from the electric arc heaters of the Mach 6 facility. Furthermore, unlike the CTA and the
CCA, the constant voltage anemometer’s operation was unaffected by the long cable
lengths between the hot-wire, located in the tunnel, and anemometer, located in the test
cell.

The basic CVA circuit is shown in Figure 2.8. Its three basic elements are 1) a
stable, low noise, DC power supply; 2) an operational amplifier; and 3) a T-resistor
network. The voltage, V,, at the center node of the T-resistor network is constant and
independent of the value of the wire resistance. A change in wire resistance due to a
change in the convective heat conditions results in a change in the wire current. This
change in current is measured as a change in the output voltage, V,, of the CVA. The
resistor R, provides the proportionality constant between the wire current and output
voltage. If this resistance is large, a small change in wire current is translated into a large
change in the output of the CVA.

In a hypersonic flow, the hot-wire operated by a CCA, CTA or CVA responds to

a mixed mode, that has both mass flux and total temperature components:

Ae_g Bpu, g AL (2.4.2)
e ” pu T

4
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The sensitivity coefficients are known to be a function of the mean flow (Morkovin,
1956) and are determined through hot-wire calibration. Lachowicz et al (1996) observed
that similar to the CCA and CTA, the CVA is more sensitive to mass flux when the hot-
wire is operated in high overheat mode and more sensitive to total temperature when the
hot-wire is operated in low overheat mode.

In linear stability theory, all flow variables of a perturbation are assumed to grow
or decay in the same manner. Kimmel and Kendall (1991) stated that in the linear growth
region, the amplification rate can be determined from the logarithmic growth or decay of
the voltage fluctuation. Kimmel (2001) observes that if the mean flow does not vary
greatly then the hot-film probe sensitivities do not change greatly. Similarly, Lachowicz
(1996) stated that for the CVA, the changes in the wire sensitivity due to changes in the
mean flow should be small relative to the exponential growth of the disturbances. In the
absence of an independent measurement, it is of interest to examine if the changes in
mean flow are small in the experiments of Blanchard (1996) and Lachowicz (1996).

In Blanchard’s experiment (1996), the CVA is operated in a constant high
overheat mode such that the hot-wire is primarily sensitive to mass flux fluctuations and
minimally sensitive to total temperature fluctuations. Uncalibrated hot-wire data are
obtained and thus, the amplification rate can be determined, but the fluctuating voltages
cannot be decomposed into mass flux and total temperature fluctuations. For
Lachowicz’s study (1996), the majority of the hot-wire measurements were also
uncalibrated. However, a calibration was performed for the hot-wires used to obtain the
freestream measurements. The primary purpose of this calibration was to measure mean

mass flux and mean total temperature profiles through the boundary layer at various
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streamwise locations. A second objective was to obtain root mean square (RMS) mass
flux and RMS total temperature profiles to quantify the nature of the boundary layer
disturbances. Lachowicz’s wire calibration is assessed in this work. For more details on
the calibration procedure, see Lachowicz’s report (1996).

The hot-wire probe used in the experimental measurements is shown in Figure
2.9. A 0.0001in diameter platinum-rhodium (10%) wire spot welded between the ends of
two needle broaches was the sensing element. A small distance beneath the wire, a
needle broach was attached to determine when the probe contacted the model wall. Hot-
wire measurements were obtained at 31 streamwise stations over the range
9.0in<x<16.5in on the 91-6 model afterbody at 0.25in increments. For the 93-10 model,
hot-wire measurements were obtained at 0.5in increments over the range
10.97in<x<14.97in and at 0.25in increments over 14.97in<x<18.97in. For both cases, x is
measured with respect to the tip of the model. Further details about the traversing and

data acquisition systems are available in (Blanchard, 1996) and (Lachowicz, 1996).
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Figure 2.3. 91-6 Cone-Flare Model and Dimensions

T, =810°R q ~ 750 Btu/r
M=591 \ Flourinert FC-72 (465°R)
ﬂ-”. = Stainless Steel Tubing Wrapped
Fiow 3 l I in Ceramic Blanket
Surface Temperature = 465°R
Heat Removal Rate
~ 3,000 Btu/hr @ 380°R

Figure 2.4. Active Cooling System for 91-6 Cooled Cone (Blanchard & Selby, 1996)
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Figure 2.6. Placement of Flared Cone Models in Wind Tunnel;
A=3" for 91-6 Model, A=3.5" for 93-10 Model (Wilkinson, 1997)
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Figure 2.7. Freestream RMS Contours; Contour Increment=0.001
(Lachowicz, 1996)
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Figure 2.8. Constant Voltage Anemometer Circuit (Sarma, 1998)

a)

b)

c)

Figure 2.9. Hot-Wire Probe, a) top view; b) side view; c) bottom view
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CHAPTER 3

NUMERICAL METHOD

3.1 Introduction

The numerical procedure for this work consists of two parts: calculation of a
mean flow solution and linear stability analysis. The smoothness of the mean flow
variables in the wall-normal direction has a great influence on the unstable stability
modes (Iyer, 1991). Smooth profiles of the first and second derivatives of velocity and
temperature must be obtained on a well resolved grid for linear stability analysis to
accurately capture instabilities in the flow. Thus, a grid refinement study is conducted to
develop a computational grid for which adequate boundary layer resolution and
convergence to a smooth solution is assured for the mean flow. Criteria for the grid
refinement study include assuring that enough grid points are located in the boundary
layer to adequately resolve the mean flow. The mean flow solution is then post-
processed and used in the linear stability analysis.

Linear stability theory is derived from the equations governing the mean flow by
modeling the instantaneous flow as a mean component plus fluctuating disturbance. All
quantities making up the fluctuation are assumed to grow or decay at the same rate.
Assumptions of linearity and parallel flow are employed in the derivation of the linear
stability equations to allow computational efficiency. These assumptions, however, do
have their limitations. Linearity assumes that there are no interactions between the
disturbances. The fluctuating disturbances are assumed small relative to the mean
components such that the high order fluctuating terms are negligible. Thus, the linear

stability equations only predict the second mode and do not predict any higher mode
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disturbances. Locally parallel flow assumes that the mean flow only varies normal to the
surface, which permits a normal mode solution. The parallel flow assumption is valid for
small boundary layer growth over a wavelength. Additionally, the model surface is
assumed smooth, and no freestream disturbances are assumed present. All of these
conditions are to a large extent met in the quiet wind tunnel experiments analyzed in this

work.

3.2 Grid Generation

The grid generation was conducted using the commercially available Gridgen
software package (1997). A representative grid is shown in Figure 3.1; for the sake of
clarity, only every 4™ grid point is shown in the streamwise and surface-normal
directions. In the streamwise direction, grid points are spaced equally between the model
tip and base. A one-sided, geometric progression spacing algorithm is used in the
surface-normal direction and the minimum spacing is specified at the wall. Geometric
spacing is used in the surface-normal direction because it produces smoother metrics in
the boundary layer (Garriz et al, 1994). The geometric progression algorithm distributes
the grid points from the wall upward in the surface-normal direction such that the ratio of
spacing between adjacent grid points is constant. A break point is inserted at the
approximate boundary layer height above the wall in the n-direction on the farfield
boundary. The number of points between the wall and the break point are specified.
Then, grid spacing is specified from the wall to the break point and from the break point
to the top of the grid in the n-direction. Using the break point allows the number of

points located within the approximate boundary layer height to be specified. A standard
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transfinite interpolation algebraic method is used to generate the grid. This method
applies blending functions based on the relative spacing of the grid points independently

to the (x, y) coordinates of the flow.

3.3 Mean Flow Analysis
The governing equations of interest for the present work are the axisymmetric

compressible Navier-Stokes equations. These equations, written in strong conservation-
law form in the Cartesian coordinate system are given by

U OB OF _

ot ox dy ’ (3.3.1)
where x is in the streamwise direction and y is in the streamwise normal direction. The
vector of conserved variables is composed of the density, momentum in the x- and y-
directions and the total energy and is given by

v=2 (3.3.2)
J

R R

E and F are the flux vectors in the x- and y-directions respectively (Tannehill, 1997). For
example:

pu
u2 +p+T
E= pUTPT s (3.3.3)
puv—7,
(E, + p)u -ut,, —v7,, +q,
S is the source vector.

Equations (3.3.1) may be written for a curvilinear coordinate system (&)

according to the following transformation with respect to a Cartesian coordinate system:
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n=n(xy)
The Navier-Stokes equations can be written in strong conservation law form using

curvilinear, axisymmetric coordinates as
oU J(E,-E o(F,-F
JOE, ~E,) A(F,-F,) .
ot o0& an

The inviscid flux vectors are given by

pU,
U, +
E, =2 puU.+.p , (3.3.6)
J|pvU. +¢,p
(E, +p)U,
and
pV,
uV, +1.p
| (3.3.7)
J|pvV.+1,p
(E, +p)V,
The viscous flux vectors are given by
0
E. = l gxz.xx + f)vTxy
vy fxfxy + fyTyy ’ (3.3.8)

fy (uT)ar +vT, + qx)+ f), (urxy +vT, + qy)

and

0
oY N7 +1,7, (3.3.9)
' J N:Ty 1,7,y

n, (uTxx +V7, +q, )+ 7R (urxy +vT,, + q),)

The source vector arising from the axisymmetric transformation is given by

1
T p-1, (3.3.10)
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The contravariant velocity components, are given by

U séu+éy, V.=nu+ny (3.3.11)
The perfect gas expressions
p=(-1)pe, (33.12)
and
E = p(e +%(u2 +v2)), (3.3.13)

are used in conjunction with Sutherland’s law for molecular viscosity to close the Navier-
Stokes system. The transformed forms for the stress and heat flux terms are found in
Tannehill (1997).

The Navier-Stokes equations are marched in time, using a nonlinear line Gauss-
Seidel approach (Edwards, 1993). An implicit full multigrid/full-approximation-storage
technique is used to accelerate the convergence to a steady state (Edwards, 1994). The
inviscid components of the Navier-Stokes set are discretized using an upwind scheme. A
high resolution, low-diffusion flux-splitting approach is employed, which combines the
accuracy of flux-difference splitting in the capturing of shear layers with the robustness
of flux-vector splittings (Edwards, 1995). In this approach, the inviscid flux at a cell
inferface is split into a convective contribution, which is upwinded in the direction of the
flow, and a pressure contribution, which is upwinded based on acoustic considerations.
The monotone capturing of strong oblique shock waves that are not aligned with a mesh
line is accomplished by constraining the cell interfaces to behave as a stationary contact
discontinuity for vanishing numerical diffusion. The upwind scheme is second order
accurate. The viscous components of the Navier-Stokes equations are central-differenced

to second order accuracy.
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At the cone wall, no slip boundary conditions are applied; in addition either
adiabatic or isothermal wall conditions are applied. At the top boundary, freestream
conditions are imposed and a zero-gradient condition is imposed on all variables.
Supersonic boundary conditions are applied at the inflow and outflow boundaries.
Freestream supersonic conditions are applied at the inflow and first order supersonic
characteristic boundary conditions are imposed at the outflow. Figure 3.2 shows the
convergence history for a typical grid examined. The residual drops by ten orders of
magnitude, and the result is fully converged. The run time is less than five minutes of

CPU.

3.4 Grid Refinement Study

Stability analysis requires an accurate mean flow resolved on a grid that is fine
enough to capture the essential physical aspects of the flow. Balakumar and Malik
(1994) noted that stability analysis depends heavily on the accurate computation of the
first and second derivatives of mean velocity and temperature profiles. Furthermore, they
stated that the grid points inside the boundary layer should be distributed such that the
peak in the second derivatives is adequately resolved. A grid refinement study was
conducted to assess the sensitivity of the mean flow to the overall grid dimensions and
grid clustering within the boundary layer. Evaluation criteria included using enough grid
points within the boundary layer such that the mean flow profiles are smooth and that the
generalized inflection point and boundary layer thickness are resolved. The discussion
that follows pertains to the 91-6 cone. Once the optimal grid was determined for the 91-6

cone, similar grid dimensions and spacings were used for the 93-10 cone.
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First, the effect of grid spacing in the streamwise direction is examined. The
computed mean flows with 481 and 241 points in the streamwise direction are identical;
thus, 241 points in the streamwise direction are used in the grid refinement study. Next,
the number of grid points and grid spacing in the surface-normal direction is examined.
The minimum and maximum surface-normal spacing at the cone tip (x=0") and base
(x=18") are summarized in Table 3.1. The results of the adiabatic wall mean flow
calculation obtained for the four cases presented in Table 3.1 are discussed below.

Figures 3.3 and 3.4 show the mean velocity and temperature profiles at x = 9” for
the four grid cases. All of the profiles are very smooth and show good agreement over
the height of the boundary layer. Over the outer portion of the boundary layer, the results
of cases 1 and 2 differ little from the more refined grids. The profiles of the first
derivative in velocity and temperature are shown in Figures 3.5 and 3.6 at x=9". These
profiles accentuate the differences in the velocity and temperature profiles over the outer
portion of the boundary layer and are smooth for all cases. The profiles for cases 3 and 4
are in very good agreement and show no anomalies. Figure 3.7 shows the generalized
inflection point profile at x = 9”; the generalized inflection point is a measure of the
angular momentum, and generally occurs near the edge of the boundary layer for a
hypersonic flow. The computed results for cases 3 and 4 are again in very good
agreement. For cases 1 and 2, it appears that too few points were located in the boundary
layer to fully resolve the peak of the generalized inflection point.

Figure 3.8 compares the predicted boundary layer thickness with the
experimentally determined boundary layer thickness. The four cases show the same

general trend for the boundary layer thickness, however case 4 is in best agreement with
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the experimental data. Overall the assessment of the mean flow profiles within the
boundary layer and the comparisons with the available experimental data show that the
mean flow solutions obtained on the 241x225 grid of case 4 are optimum.

The dimensions used for the 93-10 grid are described in Table 3.2. Due to
convergence limitations for the mean flow code, fewer grid points inside the boundary
layer were used. However, the grid spacing was adequate to capture the necessary

features of the flow.

3.5 Linear Stability Analysis

Linear stability analysis is performed using a quasi-parallel, spatial stability
theory code written by Hudson (1996). The code is used for stability analysis in two- and
three-dimensional perfect gas flows and models first- and second-mode T-S disturbances.
To formulate the linear stability equations, each flow variable is first separated into mean
and fluctuating components

u:ﬁ‘l'u,, V-——-V_"}’V,, W:W+W,, P:}_)'*‘P,, (351)

p=p+p’, T=T+T', pu=g+y’, k=k+k
Equations (3.5.1) are substituted into the governing equations, Equations (3.3.1), and the
resulting equations are linearized. The mean flow is then subtracted from the linearized
equations. A quasi-parallel flow assumption is imposed such that the mean flow
quantities at a given location depend only on the surface-normal distance from the wall.

The assumption that the fluctuating quantities are given by small amplitude harmonic

waveforms yields the following equation

g(&.n.¢.0) =g exp liaé + B¢ - w1)] (3.5.2)
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The spatial growth of a two-dimensional disturbance is examined such that the frequency
is real, the streamwise wavenumber is complex, and the spanwise wavenumber is zero.
Substituting Equation (3.5.2) in Equation (3.3.1) for the fluctuating quantities, it can be
shown that the linear disturbances satisfy the following system of ordinary differential

equations

d’ d

where A, B, and C are 5x5 matrices whose nonzero elements are given in Malik (1990)
and

=0V, p, T W) (3.5.4)
The compressible linear stability equations are solved using a boundary value method,
which is able to yield eigenvalues when no knowledge of the instability is available
(Malik, 1990).

Stability analysis requires boundary conditions for the disturbances at the wall
and in the freestream. A no-slip wall is assumed such that the velocity fluctuations are
zero at the cone surface. The temperature fluctuations are also assumed to be zero at the
wall due to the thermal inertia of the cone. As a result of hypersonic flow over the cone
surface, a shock forms between the boundary layer and the freestream. This shock is
assumed far away from the boundary layer and thus has little effect of stability (Hudson,
1996). All velocity disturbances except the y-direction and temperature disturbances are
assumed to be zero in the freestream (Malik, 1990). Thus, the boundary conditions are

given by:
V=T"=w=0at y=0,

(3.5.5)

’
u

’
u

T'=w'=0at y=oo

The pressure is calculated using the momentum equation.
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The numerical methods used to solve the eigenvalue problem depend on the
availability of an initial eigenvalue guess (Malik, 1992). When no guess is available, the
“global” approach is employed. The global method uses second order accurate central
differences to approximate the first and second derivatives in Equation 3.5.3. The global
calculation results in a spectrum of eigenvalues, which is then filtered to determine the
most unstable eigenvalue. The “local” approach is then used to improve upon the
approximate eigenvalue obtained from the global method. For the local method, a fourth
order accurate finite difference scheme is used to approximate the first and second
derivatives in Equation 3.5.3; a second order accurate difference is used at the
boundaries. The local method is also used if an initial eigenvalue guess is specified; in
this case, the global solution method is not employed. For calculations involving
successive frequencies, the improved eigenvalue obtained from the local method for the
first frequency is used as the initial guess in the local method for the next frequency
calculation. Thus, the global method is only employed for the first frequency in the
series of frequency calculations. The global solution method is more computationally
expensive than the local method. However, global methods are valuable for hypersonic
boundary layer stability problems since several modes can lie close together and an
extremely good initial eigenvalue guess is needed for the local method to converge. The
run time for a global and local solution for one frequency is less than two minutes of
CPU.

The " prediction criterion is coupled with the stability analysis results to
determine the location of transition onset. The N-factor indicates the amplification of

disturbances and is based on a correlation of experimental data. Since the ¢" method is
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based on stability theory, it addresses the physics of the flow and is more reliable than
empirical relations. Reshotko (1997) classifies the ¢ method as a reliable index of
transition behavior for two dimensional and axisymmetric configurations. The strength
of the ¢" method lies in its flexibility, as it is possible to compare the transition behavior
of various vehicles without specific knowledge of environmental distributions.

The amplitude growth of constant frequency disturbances leads to the ¢" method.
Transition can be evaluated by examining the amplification rates and determining the
fastest growing disturbance. The onset of boundary layer transition is predicted by

computing the amplitude ratio at the frequency that is growing fastest overall. Thus,

e =A—=expr LAV or N =r o, dx (3.5.6)
Ao %\ A dx )

The integration is performed at a constant physical frequency. Transition onset is the

location where the integrated amplification rate from the neutral point is 10, or the

amplitude of the disturbance has increased by a factor of e'® (22,026) from the neutral

point.
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Table 3.1. Case Descriptions for 91-6 Model Grid Refinement Study

Number of Grid Spacing
Points in x=0" x=18"
Case Boundary Ix] MNmin X 10 MNmax X 10* MNmin X 10° Mimax X 107
Layer
1 40 241145 9.93 9.80 9.60 9.70
2 45 241x225 9.99 2.10 8.80 1.29
3 90 241225 9.89 2.10 0.90 2.48
4 105 241x225 9.77 2.12 0.90 5.39

Table 3.2 Grid Spacing for 93-10 Model

Number of Grid Spacing
Points in x=0" x=20"
Boundary IXJ  MuinX 107 Mmax X 10* Nmin X 107 Max x 107
Layer
85 241x225 9.91 3.88 4.90 4.53
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, the mean flow and LST computations are compared with the
experimental measurements. The effects of wall cooling are examined for the 91-6
model. The effects of adverse pressure gradient are examined by comparing the 91-6 and
93-10 models under adiabatic wall conditions. The 91-6 model has a more adverse
pressure gradient over a larger streamwise extent of the cone surface compared to the 93-
10 model as seen in Figure 4.1, which shows the Navier-Stokes computed pressure
distributions for both models.

Pressure gradient and wall cooling effects are first examined from the computed
mean flow profiles of velocity and thermodynamic properties. Then, the mean profiles
are compared with available experimental data. Next, amplification rate calculations
from LST are presented to examine the effects of pressure gradient and wall cooling. The
response of the uncalibrated hot-wire to boundary layer fluctuations are examined.
Recommendations for future quiet tunnel experiments are also presented in the

discussion.

4.2 Mean Flow Analysis

The effects of wall cooling and pressure gradient can be quantified by examining
the mean flow profiles. In Figures 4.2 through 4.13, the mean flow profiles at x=11" are
discussed; the solid lines represent the 91-6 adiabatic model, the dashed lines represent

the 91-6 cooled model and the dash-dot-dot lines represent the 93-10 adiabatic model.
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Figures 4.2 and 4.3 show the mean velocity and temperature profiles. The wall cooling
and adverse pressure gradient decrease the boundary layer thickness. The decreased wall
temperature for the cooled model is also seen. The mean density profiles, Figure 4.4,
show the same trends seen in the velocity and temperature profiles. The hot-wire is
sensitive to mass flux and total temperature fluctuations; the sensitivity coefficients of the
hot-wire are a function of the mean flow. Thus, hot-wire calibration must account for the
total temperature and mass flux range for the measurement region. The value of the
mean mass flux profile for the 91-6 model varies from zero to 1.7 over the height of the
boundary layer as seen in Figure 4.5; the variation seen for the 93-10 model is slightly
smaller. The total temperature profiles for the 91-6 and 93-10 models are shown in
Figure 4.6. The total temperature variation through the boundary layer is much larger for
the cooled wall than for the adiabatic wall cases. Figures 4.5 and 4.6 illustrate that the
hot-wire calibration for measurements through the boundary layer must cover a wide
range of mass flux and total temperature. For the case of the cooled wall, the hot-wire
must be calibrated over a wider range of total temperature than for the adiabatic wall.
Furthermore, for both the adiabatic and cooled wall cases, the overshoot in total
temperature at the boundary layer edge necessitates wire calibration at temperatures in
excess of the freestream total temperature value.

The first and second derivatives of the velocity, temperature and density mean
flow profiles are shown in Figures 4.7 through 4.12. These profiles are smooth over the
height of the boundary layer. Thus, the mean flow solutions are well resolved and are
considered well suited as input for the stability analysis. Figure 4.13 shows the profiles

of the generalized inflection point, which is a measure of the angular momentum of the
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flow. The increasingly large peaks illustrate the destabilizing effect of pressure gradient
and wall cooling on boundary layer stability. The location of the critical layer is in the
outer portion of the boundary layer, which is expected for hypersonic flows.

Figure 4.14 compares the predicted and experimentally determined boundary
layer thickness for the 91-6 model. In the experiment the boundary layer thickness was
determined using two methods (Blanchard and Selby, 1996). In the first method, the R,,
data, the boundary layer thickness is determined as the value of y where the resistance of
the hot-wire, operated in its low overheat mode, is the same as the resistance at the outer
edge. In the second method, the V..., data, the boundary layer thickness is the value of
y where the mean voltage of the hot-wire, operated in its high overheat mode, is 99% of
its value at the boundary layer edge. Both the velocity, d,, and temperature, &, boundary
layer thicknesses are calculated. &, is specified to be the location where the vorticity is
less than 0.04% of the maximum vorticity; this value is then bounded by the criterion that
the local velocity is 99.5% of the freestream velocity. &t is the location where the total
temperature is 99.9% of the freestream value. For the adiabatic wall it is seen that
upstream of x=15" the predicted boundary layer thickness (d,) and the experimental
measurements agree within 3%. Chokani (1999, 2000) has shown that at x=12" nonlinear
effects begin to become important and by x=13" dominate the interactions in the
boundary layer for the 91-6 model. Downstream of x=15", a difference in trends
indicated by the experiment and computation is seen for the adiabatic wall case; for the
cooled wall case this difference is observed at x=13". Overall, the computed boundary
layer thickness results for the adiabatic wall show slightly better agreement with

experimental results than the cooled wall calculations. The difference in trends
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downstream of x=15" (adiabatic wall) and x=13" (cooled wall) are thought to occur since
the computed flow is wholly laminar while in the experiment the flow is transitional. It
may be of interest to examine the predictive capabilities of transitional models (Warren
and Hassan, 1998) in regards to the boundary layer thickness distribution.

Figure 4.15 compares the wall static pressure on the 91-6 model. The calculations
compare very well with the experimental data. The small differences between the
experiment and calculation possibly arise from model misalignment. The predicted
surface temperature distribution for the 91-6 model is compared with the experimental
measurements in Figure 4.16. The rise in the measured temperature at x=12" for the
adiabatic wall is due to the transitional nature of the boundary layer. Upstream of this
location, the predictions and experiment are in very good agreement, within 3% of each
other. A discrepancy between the experiment and cooled wall computations exists

”

upstream of x=6 The computational results are obtained for a constant wall
temperature. However, the tip of the thin-walled cone model is not cooled. Therefore, a
temperature gradient exists between the relatively hot tip and the cooler thin wall
downstream of the leading edge region. Uniform temperature is not achieved until x=7".
In the range of 7<x<12", the calculated and experimental results agree within 1%. The
differences between the experimental and computational results downstream of x=12" are
due to the onset of transition. In addition to the transitional nature of the boundary layer
in the experiment, there are other possible sources for the differences between experiment
and computation. In the experiment, a preheat procedure is used to bring the nozzle and

model into thermal equilibrium. Following preheat, the hypersonic flow is started and

the measurements are subsequently taken. If adiabatic wall conditions are not achieved,
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this may be a source of some discrepancy. A second possible source of error is that the
cone tip is solid whereas the cone wall is thin. Thus for the adiabatic wall case where the
wall normal temperature gradient may be negligible (ideally zero) the wall parallel
temperature gradient may be significant and heat conduction along the thin-skin wall may
contribute some differences. The heat conduction are thought to be some source of the
differences seen upstream of x=6" for the cooled wall case. One possible approach to
examine this effect is to couple the heat conduction equations for the thin solid wall with
the Navier-Stokes equations; the heat conduction equations are used to provide the wall
boundary condition for the mean flow. In the present work, this approach could not be
employed, as there are insufficient details on the model geometry and material. An
alternate approach is instead used.

The sensitivity of the mean flow solution for the 91-6 cooled model to the wall
temperature boundary condition was examined by using the experimentally measured
wall temperature distribution. A series of polynomials are fit to the data, Figure 4.17, and
used as the wall boundary condition for the mean flow calculation. The predicted
boundary layer thickness results for this calculation are shown in Figure 4.18 for the
range of the experimental measurements. The boundary layer thickness distributions
agree within 2% in the linear growth region (upstream of x=13"); thus, very little effect of
the wall temperature distribution is seen. Figure 4.17 shows a nearly constant
temperature over the range of 7<x<12" and increasing temperature downstream of x=12".
It is of interest to examine the effect of the wall temperature distribution on the mean
flow. Profiles of velocity, total temperature and density for constant and variable wall

temperature distributions at x=9” and x=13" are shown in Figures 4.19 through 4.24. The
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increased wall temperature appears to have little effect on the mean flow profiles. Thus,
using a constant wall temperature distribution is sufficient for the 91-6 cooled model
mean flow calculations. Kimmel and Poggie, who performed experimental
measurements on a cone at M=6, have also stated that the presence of a hot nose tip on
the model had little effect on the boundary layer stability or transition data (1999).

The calculated and experimentally measured pressure distributions for the 93-10
adiabatic model are shown in Figure 4.25. Geod agreement is seen and the difference is
within 6%. A possible source for the disagreement is model misalignment; experimental
results suggest that the model is at a small angle of attack. The computed and
experimentally measured temperature distributions for the 93-10 model are shown in
Figure 4.26. Lachowicz and Chokani (1996) observed that nonlinear boundary layer
interactions are first observed at x=15" or R=1890 for the 93-10 model, which
corresponds to the sharp rise downstream of this location in the experiment. Upstream of
R,=1890, the results agree within 1%. The rise in temperature occurs further downstream
on the 93-10 model compared to the 91-6 model (x=12") due to the smaller adverse
pressure gradient on the 93-10 model. The effect of the pressure gradient is seen when
the computed boundary layer thickness distributions for the 91-6 and 93-10 models are
compared, Figure 4.27. Due to the more adverse pressure gradient, the 91-6 model has a
thinner boundary layer than the 93-10 model. A comparison between experimental and
computed boundary layer thickness distributions for the 93-10 model is shown in Figure
4.28. In the experiment, the boundary layer thickness was determined as the location
where the voltage of the hot-wire, operated in low overheat mode, is 99.5% of the value

furthest from the wall. Upstream of R;=1890 the agreement between the experimental
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measurements and the &, calculation is within 1%. Downstream of R,=1890, the
computed flow is laminar, whereas the actual flow is now transitional and a larger
difference is seen.

Blanchard and Selby’s hot-wire measurements were uncalibrated and thus no
direct comparisons can be made between mean flow computations and experimental
measurements (1996). Lachowicz et al (1996) observed that the constant voltage
anemometer, like the more conventional CCA and CVA, is more sensitive to mass flux
when the hot-wire is operated in high overheat mode and more sensitive to total
temperature at when the hot-wire is operated in low overheat mode. Thus, the trends of
the hot-wire measurements obtained in high overheat mode can be compared with the
computed mean mass flux calculations and the hot-wire measurements obtained in low
overheat mode can be compared with the computed mean total temperature. Figures 4.29
and 4.30 show a comparison of the calculated mean total temperature and normalized
hot-wire resistance obtained in low overheat mode at x=9” for the 91-6 model with
adiabatic and cooled wall conditions respectively. In both cases the measured data show
the overshoot at the boundary layer edge that is also observed in the computed total
temperature profiles. The magnitudes of the overshoot are also in good agreement.
Below the edge of the boundary layer, the difference between the experiment and
computation is increasingly larger. One possible reason for the difference is that even
though the hot-wire is operated in low overheat mode, it is somewhat sensitive to fnass
flux and the mass flux is changing quite rapidly near the wall, Figure 4.5. The difference
seen in Figures 4.29 and 4.30 may also be a good measure to evaluate the new transition

models for mean flow solvers (Warren and Hassan, 1998). Figures 4.31 and 4.32 show
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contour plots of the computed total temperature and the experimentally measured hot-
wire resistance for the 91-6 adiabatic model. Upstream of x=12" good agreement is seen
over the outer portion of the boundary layer; the magnitudes and directions of the contour
lines are in good agreement. In the inner portion of the boundary layer, the contours of
R,, are more steeply inclined than the contours of 7,. The mean flow computations are
wholly laminar, whereas in the experiment, nonlinearities are observed downstream of
x=12" (Chokani, 1999). Thus, downstream of x=12", there are significant difference
between the computation and experiment. The computation contour lines show the same
trends as upstream of x=12", whereas in the experiment the contour lines in the outer
portion of the boundary layer are more closely spaced together and in the inner portion
even more steeply inclined downstream of x=12". Contour plots of the computed mass
flux and the measured hot-wire mean voltage are shown in Figures 4.33 and 4.34 for the
91-6 adiabatic model. Again, good agreement is observed upstream of x=12". However,
the laminar mean flow calculation does not capture the complexities of the flow
downstream of x=12". Similar results are seen for the 91-6 model with cooled wall
conditions in Figures 4.35 through 4.38.

In Lachowicz and Chokani’s experiment, a procedure for the calibration of the
hot-wire operated by the CVA was examined (1996). At the time of the experiment, the
CVA was a novel instrument. The relationship between the CVA output and flow

variables was assumed to be

V, =alpu)+b(T,)+c @20
where a and b represent the hot wire sensitivities and are given by
gz av, b= av,
apu) * 77 AT, @22
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Decomposing the output and flow variables into a mean and fluctuation term yields the
following for the mean flow

7, = a(pn)+ (T, )+ c “23)
The wire was then calibrated by determining the wire sensitivities for a given overheat

from a series of known flows. That is,

() T, 1o |V,
pu), T 1 v,
(pr), " bl=| " (4.2.4)
(pm), T, 1 v,

n

This procedure was repeated for different wire overheats. Then, boundary layer
measurements were conducted with the wire operated at different overheats at each

measurement point to determine the mass flux and total temperature. That is,

a, b, ‘7sl -G

a, bz (p—u) _ Vs2 Y (4.2.5)
5 T,

am bm ‘7&,, - Cm

The flow variables experimentally determined using the calibrated hot-wire are
compared with calculations in Figures 4.39 and 4.40 for the 93-10 model. At x=13.5" the
agreement between experiment and computation is very good. Lachowicz and Chokani
(1996) observed nonlinear interactions in the flow downstream of x=15". Thus, at the
more downstream locations only fair agreement is observed between the experiment and
computation. Lachowicz and Chokani attribute the differences at the more downstream
stations to transition effects, model misalignment and possible minor probe intrusion
effects. Kendall (1956) examined the effect of increasing probe diameter on the pitot

pressure measurements made in a Mach 5.8 flat plate boundary layer. Three pitot probes
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with frontal heights of 0.0025in (1/24™ of the boundary layer thickness), 0.005in (1/ 12
&) and 0.01in (1/6™ §) were examined, Figure 4.41. The 0.01in probe shows an overshoot
in the pitot pressure near the edge of the boundary layer. Pitot probe measurements were
not conducted by Lachowicz and Chokani (1996) nor Blanchard and Selby (1996).
Computations of the pitot pressure profiles at several stations on the 91-6 cooled model
are shown in Figure 4.42. An overshoot in the pitot pressure near the boundary layer is
not seen in the computations. This finding is in contrast with the measurements made by
Stetson et al (1983) and presented in Figure 4.43 (Schneider, 2000), where the pitot probe
height varies from 1/ 12™ to 1/20™ of the boundary layer thickness. The pressure
overshoot is less pronounced at the downstream location where the boundary layer is
thicker. As regards to the hot-wire measurement, the hot-wire probe, Figure 2.9, is very
small compared to the boundary layer thickness and probe intrusion effects are likely to
only be small. However, care should be taken to minimize the frontal height of the probe
support and streamline the thickness downstream of the probe tip.

The large bandwidth (that is range of frequencies) is one of the primary reasons
for employing hot-wire anemometry in hypersonic stability experiments. The bandwidth
of the CVA (as well as CCA and CTA) is dependent on the wire Reynolds number. For
example, Sarma (1999) has examined the hot-wire time constant (a measure of the
inverse of the bandwidth) as a function of the wire Reynolds number, Figure 4.44. For
the 2.5um (0.0001in) hot-wire used in the Blanchard and Selby (1996) and Lachowicz
and Chokani (1996) experiments, profiles of the calculated wire Reynolds number across
the boundary layer are shown for various streamwise locations in Figures 4.45 through

4.47. For the stability measurement data acquired near the boundary layer edge and over

53




the range of 0.83 to 8, the wire Reynolds number varies within the range of 7-20 for the
91-6 model and 19-30 for the 93-10 model. Figure 4.46 suggests that the bandwidth

should thus vary little over this portion of the boundary layer.

4.3 Linear Stability Analysis

Linear stability analysis is performed using the quasi-parallel, spatial stability
theory code written by Hudson (1996). The effects of pressure gradient and wall cooling
on the amplification rates, most amplified frequencies and N-factors are first examined.
Then, the density, velocity and temperature eigenfunctions are examined to assess the
procedures for hot-wire measurements.

The amplification rates for the 91-6 adiabatic and cooled models and 93-10
adiabatic model at x=14", 15" and 16" are plotted in Figure 4.48. These results are
obtained by determining the range of unstable frequencies in the mean flow at each
streamwise location. The results show three expected trends. First, for each test case the
amplification rates increase with increasing streamwise distance. Second, the effect of
adverse pressure gradient and wall cooling is destabilizing. Third, the range of unstable
frequencies increases as the boundary layer thickness decreases; thus, the 93-10 model
has the relatively low frequency band of unstable disturbances, whereas the 91-6 cooled
model has the relatively high frequency band. For the 93-10 model, the range of unstable
frequencies lie in a band between 160 and 240kHz which is centered on a most unstable
frequency of 190kHz. Lachowicz and Chokani measured an unstable frequency band of
170 —275kHz, centered on 230kHz (1996). For the 91-6 adiabatic model, LST predicts an

unstable band of 190-285kHz centered on 230kHz and in the experiment, Blanchard and
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Selby observe a peak frequency of 275kHz in a band of 225-345kHz. On the 91-6 cooled
model, an unstable frequency band of 235-385kHz centered on a frequency of 306kHz is
measured (Blanchard and Selby, 1996); in the LST computation, a peak frequency of
260kHz in an unstable band of 220-310kHz is predicted. The band of unstable
frequencies varies inversely with the boundary layer thickness. This tuning of the most
amplified second mode disturbances has been experimentally observed by Stetson et al
(1983), Lachowicz and Chokani (1996) and Kimmel et al (1991, 2000) amongst others,
and was first suggested in the linear stability theory analysis of Mack (1984). Doggett et
al experimentally examined the effect of angle of attack on boundary layer stability
(1997). In their experiments, the 93-10 model was tested in the Mach 6 quiet tunnel at 0°
and +2° angles of attack. Three dimensional Navier-Stokes analysis was also conducted
to assess the effects of small angle variations on the peak frequency. At x=13"
(Ree=3.1x10° the peak frequency of 238kHz changed by 55kHz with 0.2° change in
angle of attack, Figure 4.49. This observation and the LST predicted results indicate that
there may be significant angle of attack effects in the experiments. It should be noted
also that in linear stability theory the assumption that the disturbances at different
frequencies do not interact is employed. However, as Reshotko observed, the boundary
layer behaves like a nonlinear oscillator and this may be a source of some discrepancy
(1994). Another source of error may be the parallel flow assumption in the LST
approach; Herbert e al (1993) and Stuckert and Lin (1995) noted a shift in growth rate
curves when nonparallel terms are excluded. In the experiment the hot-wire
measurements were conducted along one streamwise plane. In future experiments, it may

be useful to conduct measurements along the 180° out-of-phase streamwise plane to
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resolve uncertainties with regards to the most unstable band of frequencies, Figure 4.50.
The effect of the variable wall temperature distribution, Figure 4.17, on the amplification
rates is shown in Figure 4.51. The comparisons are shown for three streamwise locations
for the 91-6 cooled model. The boundary layer is slightly thicker for the variable wall
temperature calculation, Figure 4.18, thus, the range of unstable frequencies for the
variable wall temperature distribution are 5 kHz smaller than for the constant wall
temperature distribution. Figure 4.51 however shows that the temperature distribution
has very little effect on the amplification rates and thus the boundary layer stability
(Kimmel and Poggie, 1999).

In Figure 4.48, the frequencies of the most amplified disturbances change little
with increasing streamwise distance because the boundary layer thickness varies little.
The streamwise evolution of the amplification rates for the most amplified disturbances
are shown in Figure 4.52. In contrast to a zero pressure gradient flow where there is a
decay of the most amplified disturbance after an initial unstable region, the pressure
gradient on the 91-6 and 93-10 models result in a nearly constant boundary layer
thickness and thus, the most amplified disturbances grow over the length of the flare.
The stability Reynolds number is plotted along the abscissa in Figure 4.52 to enable a
more meaningful examination of the effects of pressure gradient and wall cooling. It is
evident that the increasing adverse pressure gradient and wall cooling are destabilizing.

The N-factor distributions for the peak frequencies are shown in Figure 4.53. A
value of 9 to 10 is commonly considered indicative of transition onset (Malik, 1992).
However, Balakumar and Malik (1994) used a N-factor of between 7.5 and 8.5 to

determine the transition location. The 91-6 cooled model reaches an N-factor of 9 at
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x=18". The flow over the 91-6 and 93-10 models with adiabatic wall conditions reach
peak values of N=7 at x=18" and N=3.5 at x=20" respectively.

The density eigenfunctions of the most amplified disturbances for the 93-10 and
91-6 models at x=13" are shown in Figure 4.54. Two peaks in the density eigenfunction
are seen at approximately 30% of boundary layer thickness and at the boundary layer
edge. The velocity eigenfunctions are shown in Figure 4.55. The peak in the velocity
eigenfunction is at about 25% of the boundary layer thickness. The hot-wire anemometer
is sensitive to mass flux and total temperature. The mass flux eigenfunctions, given by

the following equation

’

(pu) = pu’+ pu+ pu’, (4.3.1)
are shown in Figure 4.56. The mass flux eigenfunctions show two primary peaks at 25%
of the boundary layer thickness and at the boundary layer edge that arise from the
dominant peaks in the density and velocity eigenfunctions. A third peak is also observed
at 60% of the boundary layer thickness and is thought to result from the density and
velocity mean flow profiles, Figures 4.2 and 4.4. The peak at 60% of the boundary layer
is most pronounced for the 91-6 adiabatic model and least pronounced for the 91-6
cooled model. The total temperature eigenfunctions are shown in Figure 4.57. A small
peak is seen at 10% of the boundary layer thickness and a larger peak is located at
approximately 75% of the boundary layer thickness. As no initial amplitude of the
disturbance is specified in LST, the effects of pressure gradient and wall cooling in
Figures 4.54-4.57 cannot be compared. However, for a given case it is evident that a hot-
wire traversed though the boundary layer will give a changing output due to the

variations in the mass flux and total temperature eigenfunctions.
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Uncalibrated hot-wire measurements on the 91-6 model were obtained with the
hot-wire operated at a high overheat mode; thus, the hot-wire was most sensitive to mass
flux fluctuations. Figures 4.58 and 4.59 show the hot-wire RMS output measured at
x=9". The RMS output is a measure of the RMS energy in the disturbances. Two peaks
are seen in the measured profiles, one at approximately 85% of the boundary layer
thickness and a second one at approximately 55% of the boundary layer thickness. Pruett
and Chang performed a Direct Numerical Simulation (DNS) for Mach 6 flow over the
93-10 adiabatic model (1998). Their normalized RMS mass-flux fluctuations are shown
in Figure 4.60. (Note that the variables x" and 1 in Figure 4.60 have different meanings
than the variables used in this work.) The x'=1.167 station in Figure 4.60 corresponds to
x=14.5" on the 93-10 model. At this station, Pruett and Chang observe a double peak in
their results. Furthermore, the y-locations of the peaks in Figure 4.60 correspond to the
locations of the peaks seen in the experimental RMS energy measurements in Figures
4.58 and 4.59.

There are several possible explanations for the double peak seen in the
experimental data and the differences between the experimental and LST results. In the
experiment, the wire is traversed across the boundary layer while the wire voltage is kept
constant. As the recovery temperature and wire Reynolds number vary through the
boundary layer, the wire’s sensitivity to mass flux and total temperature vary through the
boundary layer. In Figures 4.45-4.47, the wire Reynolds number changes significantly
over the boundary layer and as seen in Figure 4.44 at low wire Reynolds numbers the
wire has a very nonlinear response. This complex mixed mode response of the wire and

the variation of the sensitivity coefficients emphasize the need for calibrated hot-wire
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measurements. It is also important to note the observation of Pruett and Chang (1998) in
regards to their DNS computations. They noted that in the experiment the energy of the
second mode is distributed over the range of frequencies of the amplified disturbances,
whereas the computation is performed only for one frequency — in the present case, the
most amplified disturbance. Similarly, Demetriades (1977) observed that the amplitude
of the hot-wire signal persisted until 1.5 times the boundary layer thickness; in the
eigenfunctions, the boundary condition of the LST analysis require that there is no
disturbance amplitude outside the boundary layer.

The contour plots of the mass flux and total temperature eigenfunctions of the
most amplified disturbances on the 91-6 adiabatic model at 230 kHz are shown in Figures
4.61 and 4.62 respectively; the range x=9" to x=16.5" corresponds to the measurement
range. These plots can be compared with the experimental RMS contours seen in Figure
4.63 for the 91-6 adiabatic model. Contour plots of mass flux and total temperature
eigenfunctions at 260kHz for the 91-6 cooled model are shown in Figures 4.64 and 4.65
and can be compared with the RMS contours in Figure 4.66. Over the range of
measurement, the experiment and computation both show that the maximum peak moves
closer to the wall with increasing x. The second peak that is located closer to the wall is
also seen in Figures 4.62 and 4.65 over the range x=9" to x=14". In their hot-wire
measurements Lachowicz and Chokani surveyed along the path of maximum RMS
energy (1996). Similarly, Stetson (1989) using a CCA conducted his measurements
along the path of maximum RMS energy. In the Blanchard and Selby experiment (1996),
the measurements were conducted at a constant distance from the wall; this is shown as

the hot-wire survey path in Figures 4.62 and 4.65. It is clear that this does not coincide
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with the maximum in the RMS contours and this may be a potential source of error in the
comparison of experimentally and computationally determined disturbance amplification

rates.
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Figure 4.45. Wire Reynolds Number for 0.0001in Wire at Various Streamwise
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Figure 4.46. Wire Reynolds Number for 0.0001in Wire at Various Streamwise
Locations, 91-6 Cooled Model
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CHAPTER 5

CONCLUDING REMARKS

A computational assessment of two stability experiments performed in the NASA
Langley Mach 6 Quiet Nozzle Test Chamber Facility has been conducted. Navier-Stokes
calculations of the mean flow and linear stability theory analysis of the boundary layer
disturbances are conducted. The two experiments analyzed in this work enable the
effects of adverse pressure gradient and wall cooling to be examined.

The computed surface pressures are in very good agreement with the
experimental measurements. Computed surface temperatures also show overall good
agreement with the experiment. However, in the experiments a thin walled model is
used. Thus, with wall cooling a pronounced temperature gradient exists on the forward
portion of the model, whereas in the computation a constant wall temperature is
specified. The use of a variable wall temperature fit to the experimentally measured data
for the computations shows that there is neither a significant effect on the mean flow
profiles nor on the boundary layer stability due to the temperature gradient. The majority
of the experimental measurements are uncalibrated hot-wire measurements. The
computed profiles of mass flux and total temperature show very good agreement with
hot-wire measurements when the wire is operated in a high and low overheat modes
respectively. This finding verifies that the hot-wire operated with the CVA behaves
similarly to the more traditional CCA and CTA in regards to the mixed mode sensitivity.
In the one case where calibrated hot-wire data are available, the computed and
experimental profiles show excellent agreement in the early stages of the transitional

flow. In the latter streamwise stations, where nonlinear interactions become important,
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differences are seen in the profiles over the height of the boundary layer. In future work,
it would be of interest to assess the performance of newly developed transitional models
in this region of the boundary layer development.

The sensitivity of the hot-wire to mass flux and total temperature is also examined
using the computed wire Reynolds number and eigenfunction profiles. The analysis
suggests that even when operated in the high overheat mode, the sensitivity of the hot-
wire to total temperature is significant. This is most clearly observed when profiles of the
CVA output are compared with eigenfunctions of mass flux and total temperature. The
eigenfunctions show multiple peaks, whereas the CVA output shows only two peaks.
The variation of the wire Reynolds number across the boundary layer suggests a highly
nonlinear response of the hot-wire. Thus, while uncalibrated hot-wire measurements are
useful to characterize the overall features of the flow, calibrated hot-wire measurements
are necessary for quantitative flow comparisons with stability theory results. In order to
make comparisons with PSE it is also necessary to adequately document the initial flow
conditions in the experiment.

The computed effects of adverse pressure gradient and wall cooling are found to
be consistent with experimental observations. The boundary layer thickness decreases
with both adverse pressure gradient and wall cooling. The unstable second mode
disturbances are tuned to the boundary layer thickness; thus, the frequencies of the
disturbances increase with added adverse pressure gradient and wall cooling. The
amplification rates of the unstable disturbances also increase due to adverse pressure

gradient and wall cooling. In future work it will be useful to conduct PSE analysis,
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which takes into account nonlinear and nonparallel effects; this analyses, however,

requires calibrated hot-wire experimental measurements.
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